DT-200

version 3

Dual Technology • Low Voltage Occupancy Sensor

with Light Level, Isolated Relay and Manual On features

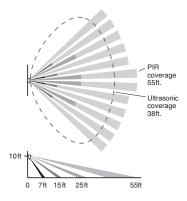
SPECIFICATIONS

Voltage	18-28VDC/VAC
Current Consumption	25mA
Power Supply	WattStopper Power Packs
Isolated Relay Rating	1A @30VDC/VAC
Operating Temperature	32° to 131°F (0° to 55°C)
Light Level One-Step Adjustment	10FC to 200FC
Time Delay Adjustment	30 seconds to 30 minutes
Walk-Through Mode	3 minutes if no activity after 30 sec
Test Mode	5 sec. or DIP switch reset
PIR Coverage (Typical)	1000 ft2
Sensitivity Adjustment	High or Low (DIP switch setting)
Ultrasonic Coverage (Typical)	800-1200 ft2
Sensitivity Adjustment	Minimum to Maximum (trimpot
Frequency	40kHz

Watt Stopper®

UNIT DESCRIPTION

The WattStopper DT-200 Dual Technology occupancy sensors combine advanced passive infrared (PIR) and ultrasonic technologies into one unit. The combination of these technologies helps to eliminate false triggering problems even in difficult applications.


The DT-200 turns lighting systems on and off based on occupancy and ambient light levels.

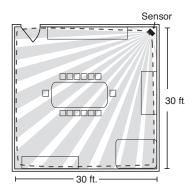
The DT-200 offers numerous operating modes that can be combined to create the ideal custom control. The sensors can be configured to turn lighting on, and hold it on as long as either or both technologies detect occupancy. After no movement is detected for the duration of the time delay (30 seconds to 30 minutes) the lights are switched off. A "walk-through" mode can turn lights off after only 3 minutes, if no activity is detected after 30 seconds of an occupancy detection.

The DT-200 operates on 24VDC supplied by WattStopper Power Packs. DT-200 sensors also have an isolated relay with Normally Open and Normally Closed contacts for interfacing with HVAC or EMS.

COVERAGE PATTERN

The DT-200 provides an eliptical coverage pattern. The coverage shown represents walking motion at a mounting height of 10 feet. For building spaces with lower levels of activity or with obstacles and barriers, coverage size may decrease.

Dense Wide Angle Lens up to 2000 sq ft for walking motion up to 1000 sq ft for desktop motion


(Drawings not to scale.)

PLACEMENT GUIDELINES

Depending upon obstacles such as furniture or partitions, the area of coverage may be less or more than the sensing distances shown in the coverage pattern. This must be considered when planning the number of sensors and their placement. It is also recommended to place the sensor 4 to 6 feet away from air supply ducts.

The DT-200 is designed for a ceiling height of about 8-10 feet. Mounting above or below this range will significantly affect the coverage patterns. As a general rule, each occupant should be able to clearly view the sensor.

Masking the PIR Lens: Opaque adhesive tape is supplied so that sections of the PIR lens can be masked. This restricts the sensor's view and allows you to eliminate PIR coverage in unwanted areas such as hallways outside of the desired coverage area. Since masking removes bands of coverage, remember to take this into account when troubleshooting coverage problems. The Ultrasonic coverage cannot be masked, but you can adjust its sensitivity to reduce the coverage area.

One sensor, conference room (Drawings not to scale.)

WIRING DIRECTIONS

TURN POWER OFF AT THE CIRCUIT BREAKER BEFORE INSTALLING POWER PACKS OR SENSORS.

Each WattStopper BZ series power pack can supply power for 3 DT-200 sensors. When using more sensors than this, multiple power packs are required.

Refer to the wiring diagram on the next page for the following procedures:

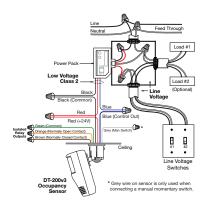
Connect the LOW VOLTAGE:

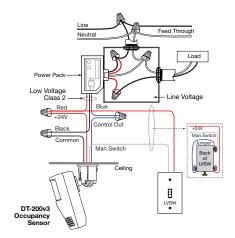
- RED wire (+24VDC) from power pack to the **red** wire on the sensor.
- BLACK wire (Return) from power pack to the **black** wire on the sensor.

Wiring a single lighting load controlled by occupancy-connect:

• BLUE wire from power pack to the **blue** wire on the sensor.

To add a **Momentary manual switch** such as the LVSW Momentary Toggle Switch, to the above applications–connect:


- Wire from one side of switch to the grey wire on sensor.
- Wire from other side of switch to the **red** wire on sensor.


Wiring the Isolated Relay: (The Isolated Relay is rated for 1A@30VAC/VDC)

Connect the wires necessary to the application that requires this output:

- Relay Common (must be used for proper operation) is the **green** wire
- N.O. (Normally Open)-Closed when occupancy is detected, is the orange wire
- N.C. (Normally Closed)–Open when occupancy is detected, is the **brown** wire

Sensor Function	DT-200 ver.3	DT-200 ver.2	BZ-50 PP
+24VDC in	RED	Violet	RED
Common to Power Pack	BLACK	Grey	BLACK
Control Output	BLUE	Yellow	BLUE
Isolated Relay Common	GREEN	Red	
Isolated Relay N.O.	ORANGE	Orange	
Isolated Relay N.C.	BROWN	Brown	
Momentary Switch	GREY	Green	
Light Level Control Output	N/A	Blue	

Manual-On wiring with low voltage momentary switch

Visit our website for FAQs: www.wattstopper.com

MOUNTING THE SENSOR

The DT-200 sensors can be mounted to walls or ceilings with the supplied swivel bracket, and the supplied iunction box cover plate if necessary (see figure B). Mounting at fixture height is most effective.

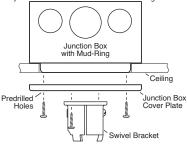
Ceiling: It is best to leave approximately six inches between the sensor and the wall so that the Tightening Screw can be easily accessed. Orient the Base Bracket's Half-Circle Notch in the direction that the sensor will point.

Wall: Orient the Base Bracket's Half-Circle Notch, up.

- 1. Mount the Base Bracket to the mounting surface with screws.
- 2. At the center of the Base Bracket, drill a hole in the ceiling or wall (unless mounting to a junction box) large enough to thread the sensor's wires through.
- 3. Guide the sensor's wires into the Base Bracket and through the hole in the ceiling or wall.
- 4. Connect the sensor to the Base Bracket by angling the Post Bracket so that it is in line with the half circle notch, as illustrated in figure A. Push the ball into the Base Bracket opening until it snaps into place, being careful not to pinch the wires. The brackets can be easily connected or disconnected using this orientation

MM

Reference


Surface Anale

Post

Bracket

- 5. Insert the Tightening Screw and Nut into the Base Bracket as illustrated.
- 6. Use the Reference Surface Angle to adjust the sensor for optimum coverage. When mounted at ten feet, the Reference Surface Angle should be parallel to the wall or the vertical (see figure C). (As the mounting height decreases, the sensor will be tilted up slightly: as the mounting height increases, the sensor will be tilted down slightly).

Half-Circle

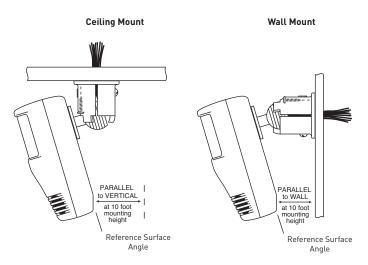
Notch

Rase

Bracket

Tiahtenina

Screw


-Nut

Junction box cover plate installation WattStopper recommends using a 3.0" mudring with a 4" octagonal box

Sensor Angle Adjustment

While watching the LEDs for flashes (Red LED indicates activation from the PIR sensor; Green LED indicates activation from the ultrasonic sensor), have a person walk back and forth at the far end of the space. Increase or decrease mounting angle as needed until the desired coverage is achieved.

Tighten the Tightening Screw to hold this position.

Service

To override all sensor functions, set the Ultrasonic Sensitivity trimpot to the fully counterclockwise (Service) position. This bypasses the occupancy control functions of the sensor, but still allows the lights to be manually controlled with a light switch, if one is installed.

LIGHT LEVEL FEATURE

The Light Level feature holds lights off upon initial occupancy if adequate ambient light exists. It will not turn the lights off if they are on. The default setting is for maximum, meaning that even the brightest ambient light will not hold the lights off

Notes on Functionality

- Avoid mounting the sensor close to lighting fixtures
- Adjust during daylight hours when ambient light in the area is at desired level.
- Light Level cannot be enabled while Test Mode is active. Either wait for Test
 Mode to expire or select any of the other Time Delay settings before enabling
 the Light Level feature.
- PIR occupancy indicator LED may still respond when lights are being held
 off. LED will also flash periodically to indicate the sensor has Light Level
 enabled.
- Light Level settings are only saved in the event of a power loss. Disabling Light Level and then reenabling it will not return it to previous settings.
- If Test Mode is enabled after Light Level has been set, Light Level functionality will cease to function throughout the duration of Test Mode.
 When Test Mode period expires, the Light Level functionality will resume, even if the Dip Switches remain set to Test Mode.

Setting Light Level

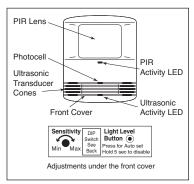
- 1. Make sure Test Mode is not active.
- 2. Open the Front Cover and locate the Light Level pusbbutton. See Sensor Adjustment.
- Press the Light Level button. Do not exceed 5 seconds.* The sensor enters setup mode, as indicated by the rapidly flashing LEDs. The LEDs will flash throughout the setup process. Occupancy indications from the LEDs is disabled during setup.
- 4. Move away from the sensor to avoid interference with light level detection. The sensor measures the light level for a 10 second period, then averages the readings and automatically sets the level that will be used as the new setting. The sensor will hold lights off when the ambient light exceeds this setting.
- 5. When the LEDs stop flashing, replace the Front Cover

*Disabling Light Level

Pressing the pushbutton for 5 seconds or more resets the light to default [maximum].

Press and hold the Light Level button for 5 seconds or until the detection LEDs turn ON and then OFF. The LEDs flash rapidly for 10 seconds after the setting has changed.

SENSOR ADJUSTMENT


The sensors are factory preset to allow for quick installation in most applications. Verification of proper wiring or coverage, or customizing the sensor's settings can be done using the following procedures. To make adjustments, open the Front Cover with a small screwdriver.

There is a 30 second warm-up period when power is first applied.

Before making adjustments, make sure the office furniture is installed, lighting circuits are turned on, and the HVAC systems are in the overridden/ on position. VAV systems should be set to their highest airflow. Set the Logic Configuration and Time Delay to the desired settings. See "Logic Configuration Chart", next page.

To Test Occupancy Sensors

 Ensure the Time Delay is set for Test Mode* using the "Test Mode/20 minutes" setting. (DIP switches 1, 2, & 3 are 0FF).

- Ensure that the Light Level is at default (maximum). Press and hold the pushbutton for 5 seconds or until the Green LED flashes rapidly. Wait 10 seconds for the flashing to stop.
- 3. Ensure that the Ultrasonic Sensitivity trimpot is set to about 70%, clockwise.
- 4. Remain still. The red and green LEDs should not flash. The lights should turn off after 5 seconds. (If not, see "Troubleshooting.")
- Move around within the coverage area. The lights should come on. Adjust the Ultrasonic Sensitivity as necessary to provide the desired coverage (Green LED indicates activation from the ultrasonic sensor).

When testing and adjustment is complete, reset DIP Switches and Light Level to the desired settings, and replace the cover on the sensor.

*Test Mode is a temporary state that starts when you first set the sensor's DIP switches for the "Test Mode/20 minutes" (switches 1, 2, 3 OFF). If you need to invoke the Test Mode and the DIP switches are already set for Test Mode/20 minutes, toggle DIP switch 1 ON then back to the OFF position. This provides a 10 minute test period. During the test period, the Time Delay is only 5 seconds.

DIP SWITCH SETTING

Time Delay: Switches 1, 2, 3

The sensor will hold the lights ON as long as occupancy is detected. The time delay countdown starts when no motion is detected. After no motion is detected for the length of the time delay, the sensor will turn the lights OFF

Walk-through: Switch 4

Walk-through mode turns the lights OFF three minutes after the area is initially occupied, if no motion is detected after the first 30 seconds. If motion continues beyond the first 30 seconds, the selected time delay applies.

PIR Sensitivity: switch 5

- Minimum forces a reduced detection range for the PIR.
- Maximum causes the DT-200 to monitor the controlled environment and automatically select the maximum sensitivity that will provide reliable operation without false detection. This setting is constantly updated.

Occupancy Logic: Switches: 6, 7, 8

The DT-200 has 8 logic configurations for occupancy triggers, set with DIP switches 6, 7 & 8. Determine the appropriate Occupancy Logic Option using the Trigger matrix, then set the DIP switches accordingly.

Initial Occupancy: The method that activates a change from "Standby" (area unoccupied and loads are OFF) to "Occupied" (area occupied and loads are ON).

- Both requires detection by PIR and Ultrasonic.
- Either requires detection by only one technology.
- PIR requires detection by the PIR.
- Man. requires activation of the Manual Switch. (See Manual ON functions" for further information.)

Maintain Occupancy: The method indicating that the area is still occupied and the lights should remain ON.

Re-trigger: After the time delay elapses and the lights turn OFF, detection by the selected technology within the number of seconds indicated turns the lights back ON.

Feature		vito	h#	
Time Delay	1	2	3	
Test Mode/20 min	¥	₩	\	
30 seconds	¥	+	^	
5 minutes	4	1	*	
10 minutes	+	1	^	
15 minutes	^	*	*	
20 minutes	♠	\	^	Z
25 minutes	1	1	+	
30 minutes	1	^	^	

Lilabica		
Disabled	4	◀
PIR Sensitivity	5	
Minimum	^	

Maximum | + |

Walk-Through

	Settings	6	7	8	
	Standard	¥	+	\	Z
>	Option 1	^	+	+	
Occupancy Logic	Option 2	¥	^	\	
g	Option 3	1	^	\	
cupa Logi	Option 4	¥	+	^	
ŏ	Option 5	↑	4	↑	
U	Option 6	¥	^	^	
	Option 7	1	1	1	

		Initial Supancy	ntain	rigger conds ation)
	Trigger	Init Occup	Main! Occup	Re-trigger (seconds duration)
ic	Standard	Both	Either	Either(5)
Logic	Option 1	Either	Either	Either(5)
	Option 2	PIR	Either	Either(5)
င်	Option 3	Both	PIR	Both(5)
an	Option 4	PIR	PIR	PIR(5)
Occupancy	Option 5	Either	PIR	Either(5)
힜	Option 6	Man.	Either	Either(30)
ŏ	Option 7	Man.	PIR	Both(30)

- = Factory Setting
- \uparrow = ON
- **★** = OFF

MANUAL ON FUNCTION

The Manual **ON** function is facilitated by installing a momentary switch such as Watt Stopper LVSW Momentary Toggle Switch. The switch connects to the sensor's Manual (Man.) Switch and +24VDC terminals as shown in the wiring diagram. Each time the switch is pressed, the load changes state. The sensor's operation as related to the manually operated switch is determined by DIP switch settings for Occupancy Logic.

Manual Mode (Trigger Option 6 or 7): In this mode, the switch is required to turn on the load. The sensor keeps the load on, based on occupant activity. After the time delay ends, if there is no movement detected within the 30 second re-trigger period, the load turns OFF and the manual switch must be used to turn ON the load.

Automatic Mode (any Trigger Option except 6 or 7): These options use occupancy triggers as well as switch activation to turn the load **ON**. A manual switch provides the following additional functionality:

- The load can be turned ON using the manual switch and it stays on according to
 the occupancy logic setting. The time delay operates as programmed. When the
 load turns OFF due to lack of occupancy detection, it can be turned ON again by
 occupancy detection or the switch.
- Activating the manual switch while the load is ON turns the load OFF.
 - When the load is turned OFF manually, as long as the sensor continues to detect occupancy the load stays OFF. The length of the time delay after the last occupancy detection, the lights stay off and the sensor reverts to the automatic-on mode.
 - When the load is turned OFF manually, pressing the switch again turns the load ON and the sensor reverts to the automatic-on mode.
 - Once returning to automatic-on mode, either the switch or occupancy detection can turn the load ON.

OVERLOAD PROTECTION

The occupancy sensor has a built in overload protection function that will automatically turn off the control output when the load current exceeds 200mA. The sensor LEDs will then blink rapidly (~ 10Hz) to provide a visual indication of an overload condition. When the load current is corrected or returns to normal, the control output will turn back on.

TROUBLESHOOTING

CAUTION TURN POWER OFF AT THE CIRCUIT BREAKER BEFORE WORKING WITH OR NEAR HIGH VOLTAGE.

For any unexpected operation

- 1. Check DIP switch settings.
- Make sure the switches are set according to the defined settings in the DIP Switch Setting chart.

Lights do not turn on when entering the room.

Neither LED Flashes

- 1. Check that the circuit breaker has been turned back on.
- 2. Check all sensor and power pack wire connections.
- Check for 24VDC input to the sensor between the red and black low voltage wires.
 - If 24VDC is present, replace the sensor.
 - If 24VDC is not present, check the high voltage connections to the power pack.
 - If high voltage connections are good and high voltage is present, replace the power pack.

Red LED does not flash

- When power is initially applied to the sensor, there is a warm-up period of 30 to 60 seconds before the LED becomes active.
- 2. Make sure PIR sensitivity is set to 100% (DIP switch #5 is in the "off" position).

Green LED does not flash

Ultrasonic sensitivity setting may need to be increased. Turn adjustment trimpot clockwise until the LED begins to flash when movement occurs.

Green LED is on steady

Check ultrasonic sensitivity trimpot. Fully counterclockwise position is the override for the sensor. Turn trimpot clockwise until LED flashes only when movement occurs in the desired coverage area.

Red and Green LEDs flash

- 1. Check all sensor and power pack connections.
- 2. Check if Light Level is enabled.
 - If occupancy indicator LEDs blink together every few seconds, sensor is using Light Level feature.
 - If Light Level functionality is not desired, press and hold for 5 seconds to return sensor to the default setting (maximum).
- Check for 24VDC at the power pack blue and black wire connections to sensor while sensor is active.
 - If there is no voltage, replace the sensor.
 - If there is voltage, check for 24VDC between the blue and black wire at the power pack. If 24VDC is present and the relay is not closing, replace it.
 - If 24VDC is not present, check for a break in the low voltage wiring.
- If LEDs are flashing rapidly (~10Hz), an overload condition exists. When this
 is corrected, the sensor will return to normal operation. Check the blue wire
 connection. If necessary, replace the power pack.

Lights do not turn off automatically.

Green LED flashes

Reduce ultrasonic sensitivity by turning adjustment pot counter-clockwise until it only flashes when movement occurs.

Red LED flashes briefly and Green LED does not flash

Check to see if you have used the Manual Switch connection. Do not connect anything to this terminal if you are not using a low voltage momentary switch between the sensor and power pack.

Red LED randomly flashes

Set PIR sensitivity to minimum by turning DIP switch 5 to the "on" position.

Lights do not turn off

- 1. Check all sensor and power pack wire connections.
- 2. Disconnect power pack blue wire.
 - If lights do not turn off, check power pack wiring. Replace the power pack if necessary.
 - If lights turn off, the problem may be the sensor or wiring between the sensor and power pack.

- 3. Reconnect the blue wire.
 - Turn sensitivity and time delay to minimum, and allow the sensor to time out.
 - If lights turn off, the sensor is working properly adjust sensitivity and time delay for the sensor.
 - If lights do not turn off, check the wiring between the sensor and power pack.
 - If wiring is correct, replace the sensor.

ORDERING INFORMATION

Catalog #	Description	
DT-200	Dual Technology Occupancy Sensor, Low Voltage w/Isolated Relay	
DT-205	Dual Technology Occupancy Sensor, Low Voltage	
BZ-50, 150	Power Pack: 120/277VAC, 50/60Hz, 225mA with relay connected, 20A ballast/incandescent	
B347D-P	Power Pack: 347VAC, 60Hz, 150mA. 15A ballast	
S120/277/347E-P	Auxiliary Relay Pack: 120/277VAC, 60Hz, 20A Ballast 347VAC, 60Hz, 15A Ballast	

WARRANTY INFORMATION

WattStopper warranties its products to be free of defects in materials and workmanship for a period of five (5) years. There are no obligations or liabilities on the part of WattStopper for consequential damages arising out of or in connection with the use or performance of this product or other indirect damages with respect to loss of property, revenue, or profit, or cost of removal, installation or reinstallation.

Watt Stopper®

2800 De La Cruz Boulevard, Santa Clara, CA 95050 800.879.8585 • www.wattstopper.com Please Recycle

